

Nuclear Safety Issues for the Rare Isotope Accelerator

Larry Ahle and Jason Boles
Lawrence Livermore National Laboratory

Rare Isotope Accelerator R&D Workshop Bethesda, Maryland August 27, 2003

Facility Classification

The case for the accelerator safety path must be made early

- > Technical Safety Requirements
 - surveillance requirements
 - increased recordkeeping
 - operational readiness review
 - enforcement provisions
- > increased maintenance requirements
- > external review by DNFSB

Nuclear Facility Approach

Hazard Category	3	2
Selected structures, systems, & components (SSCs)	Safety- significant	Safety- class
Seismic performance class	PC-2	PC-3
Specification (concrete structure)	ACI-318	ACI-349

ACI 318 – Gen Bldg Code – Reinforced Concrete ACI 349 – Nuclear Safety Related Structures

DOE G 420.1-1 identifies standards for SS and SC

- ✓ Structures
- √ Ventilation system
- ✓ Process equipment
- ✓ Handling equipment
- ✓ Electrical
- √ I&C

Segmentation, Phased Operation

- Segmentation: Division of a nuclear facility into independent segments where design features preclude accident phenomena in one segment from spreading to another segment
 - Advantage Minimize the nuclear facility footprint
 - Spallation Neutron Source (ORNL) only its target building is a candidate nuclear facility
 - At RIA, the isotopes are extracted fundamentally different than SNS – further work needed on defining the nuclear segment boundary on the "back end"
- Phased Operation Spallation Neutron Source
 - Commissioning and Low Power Operation all systems covered as Accelerator facility
 - High Power Operation Target building transitions to nuclear facility (Category 3, then Category 2), 6 months to 1 year after project completion (CD-4)

Flexibility and USQ

- RIA will field proton to uranium beams on various targets. Cannot analyze all potential configurations in the documented safety analysis.
- An Unreviewed Safety Question process would be followed for beam-target configurations not in the documented safety analysis
 - RIA-defined procedure approved by DOE in place prior to operations
 - If new configuration falls within the safety basis, then DOE approval is not required

Number of Isotopes to Consider for Category 2

Irradiation time

	1 day	7 days	28 days	1 year	20 years
All	94	94	94	94	94
< 1 E16 pps	10	13	17	25	34
Z < 93	10	11	13	19	25
Z < 82	3	3	5	10	16

Ensuring RIA's inventory stays below Category 2 thresholds requires consideration of a small number of isotopes

Separate storage building for mitigating impact of long-lived isotopes

	Required product Category 2	DIA proton		
	1 month	20 years	RIA proton beam	
Ac-227	6.5 E13 pps	3.4 E11 pps	2 545 000	
Th-228	1.2 E14 pps	3.4 E12 pps	3 E15 pps	

- Periodic removal of targets/components with longlived isotopes to a co-located storage building (Idea already discussed by RIA community)
- The hazard categorization of the storage building would be independent from the target building (segmentation)
- Having separate storage building increases the likelihood that the target building will remain Category 3

ISOL Hand Calculations

- Preliminary calculations
- Proton beam
- Monoenergetic cross sections (YIELDX)
- Uranium carbide target
 - 0.43 Cat 3 fraction
 - 0.0044 Cat 2 fraction
 - For 5 g/cm² target, 1 month irradiation
- Calcium oxide target
 - 2.9 Cat 3 fraction (mostly from ³²P)
 - 0.0082 Cat 2 fraction
 - For 5 g/cm² target, 1 month irradiation
- Copper beam stop 20 year irradiation
 - 0.34 Cat 2 fraction

Summary

- Need to make the case early to DOE in favor of accelerator safety
- SNS Linac can be segmented as an accelerator facility
- Further work needed to determine nuclear segment boundary post-target
- Target building will likely be a Category 3 segment
- Co-located storage building may be needed as a Category 2 segment
- Sophisticated inventory calculations needed